数据可视化基础——数据模型

本系列「数据可视化基础」文章共三篇,介绍可视化中最基础、最重要的一些概念、理论。这篇为第二篇,主要介绍数据模型 (opens in a new tab),另两篇则主讲可视化流程 (opens in a new tab)视觉编码 (opens in a new tab),建议从可视化流程看起。 原文地址:http://geekplux.com/2017/01/02/basics-of-data-visualization-data-model (opens in a new tab)

数据说白了就是一组可定性或可量化的值。随着计算机存储能力的大幅提高,人们对于数据的关注与日俱增,「大数据」一词近几年来也被人们频频提及。而数据可视化的主要任务是将数据转换为易于感知的图形。因此,为了更准确更形象的表达数据,我们需要了解一些数据相关的概念。

数据模型与概念模型

为什么数据能代表我们的世界?要回答这个问题,我们得先了解数据和概念两个模型。

数据模型是一组数字或符号的组合,它包含数据的定义、类型等,可以进行各类数学操作等。概念模型描述的是事物的语义或状态行为等。

现实 => 概念 => 数据

现实世界可以用概念模型来描述,而概念模型又可以用数据模型来描述。经过两层抽象,数据便可以描述我们的现实生活中的方方面面。

数据类型

一个东西具体归为哪一类,取决于我们用什么标准划分,数据亦然。

从数据在计算机中的存储可分为浮点数、整数、字符等;从关系模型的角度分,数据又可以分为实体和关系两类;从数据的结构来分,可以分为一维、二维、三维、多维、时间序列、空间序列、树型、图型等等[3];还有很多的分类方法,我们暂时先不讨论,把关注点聚焦到和数据可视化有关的分类方法上。

按照测量标度来分,数据一般被分为四类:类别型有序型区间型比值型

不同的数据类型适用于不同的操作[1]:

数据类型操作集合操作统计操作
类别型=、≠互换元素位置类别、模式、列联相关
有序型=、≠、>、<计算元素单调递增(减)中值、百分位数
区间型=、≠、>、<、+、-元素间线性加(减)平均值、标准方差、等级相关、积差相关
比值型=、≠、>、<、+、-、×、÷元素间相似度变异系数

不过,在数据可视化中,我们通常不特别区分区间型和比值型,将其统称为数值型。进而可将数据类型进一步精简为三种:类别型有序型数值型。具体为什么要分为这三类,我相信你看完下一篇视觉编码 (opens in a new tab)之后会完全明白。

例子

说了那么多,都比较抽象,不如直接来看个例子。下面是一个简单的数据表,每一行通常称作一条记录,每一列称作一个字段,共有几个字段,则通常就说这份数据有几个维度

id类型款式尺码销量年增长
1男款上衣L5010%
2女款上衣S355%
3女款裤子M4020%
4男款上衣XL3015%

对照我们上文的概念,不难判断出上表中:

总结

至此,其实本文的任务就已经完成了。通篇传递的最重要的知识就是数据可视化中的三大数据类型,消化了这点,下一篇视觉编码 (opens in a new tab)就能更好的理解。欢迎各位在我博客文末留言讨论(如果看不到评论框可能是因为你没有科学上网)。

参考文献